

On the Foundations of Trust in networks of Humans and Computers*

Virgil D. Gligor Carnegie Mellon University Pittsburgh, PA 15213 gligor@cmu.edu

SERE NIST, Gaithrsburg, MD 2012 June 20, 2012

*joint work with Jeannette Wing, Tiffany Hyun-Jin Kim and Adrian Perrig

CyLab www.cylab.cmu.edu

1. What are Trustworthy Systems?

- (in)security axioms

2. Interactive Trust Protocols on Trustworthy Systems

- necessary conditions: value, asymmetry, safety

3. Role of Collateral in Interactive Trust Protocols

- advantages of social ("street-level") collateral

4. An Example: Street-Level Semantics for Attribute Authentication

- semantics and visualization

5. Summary and Future Research

- why trust? why interactive protocols? why street-level?
- systems, deception and scams, machine learning, trust networks

- 1. There will always (> 15 years) be
 - bugs/features & human "errors" that will lead to security vulnerabilities
 - adversaries (e.g., malware, insiders) willing and able to exploit them

1. There will always (> 15 years) be

- bugs/features & human "errors" that will lead to security vulnerabilities
- adversaries (e.g., malware, insiders) willing and able to exploit them
- 2. There will always be rapid innovation in IT, and it will always lead to low-

assurance systems

frequent updates of system configurations

=> perennially out-of-date assurances

(e.g., "high assurance is always available when you no longer need it")

systems comprising components of diverse provenance
 => non-uniform assurances and more attack surfaces

(e.g., "lemon" apps always will drive high-assurance apps out of the market)

- 1. There will always (> 15 years) be
 - bugs/features & human "errors" that will lead to security vulnerabilities
 - adversaries (e.g., malware, insiders) willing and able to exploit them in the Internet
- 2. There will always be rapid innovation in IT, and it will always lead to low-

assurance systems

=> frequent updates of system configurations

 => perennially out-of-date assurances
 (e.g., "high assurance is always available when you no longer need it")

 ⇒ systems comprising components of diverse provenance

 ⇒ non-uniform assurances ("toxic" components?) & more attack surfaces
 (e.g., "lemons" always will drive high-assurance apps out of the market)

3. There will always be

- large, complex systems whose security is not fully understood by most users

"in software, only [module] giants survive...." [Lampson, ICSE, 1999]

"security is fractal: every part is as complex as the whole" [Lampson, CACM 2009]

Systems with Demonstrable Security Properties despite Axiomatic Insecurity of their Commodity Computing Platforms

- properties that hold in the presence of an Adversary;
 e.g.,
 - malware
 - malicious insiders

Interactive Trust Protocols

Am I talking to the Sender?

CyLab www.cylab.cmu.edu

Am I talking to the Sender?

www.cylab.cmu.edu

Mouse Click: Accept {Sender, PK_{Sender}}?

Sources of Malware Today

Carnegie Mellon

 Non-Uniform Assurances: e.g., unpatched systems -> exploits based on buffer overflows, XSS, etc. 	Most of Today's
 Features: e.g., USB Drives, Network Drives; AutoRun/AutoPlay Large Software Systems: e.g., Microsoft Office (e.g., .ppt, .doc, .xls), Adobe .pdf viral file infection 	Problems will <u>not</u> Disappear any Time
 Human Errors e.g., social engineering, scams, deception via e-mail, P2P sharing, social networks 	Soon

Value

Honest or Trustworthy (TW) Behavior

= compliance with the protocol specifications

- Both parties are TW => Both are <u>better off</u> after session
 Value to Receiver = Tw_R > 0 and Value to Sender = Tw_s > 0
- Future sessions (Rational Receiver Takes Action again)

VDG, June 20, 2012

- unTW Sender is <u>better off</u> than TW Sender and TW Receiver is <u>worse off</u> after session $Gain_s = unTw_s - Tw_s > 0$ and $Loss_R > 0$
- unTW Sender => No future sessions (Rational Receiver will "Reject")

Asymmetry

Asymmetry persists

Completeness: Behavioral-Trust Primitives

Carnegie Mellon

CyLab www.cylab.cmu.edu

CyLab S

Completeness: Behavioral-Trust Primitives

Asymmetry persists

0% Isolation **and** 0%Trustworthiness <u>Evidence</u> **and** 0% Recovery **and** 0% Deterrence => 100% **Trust**

Is it <u>ever</u> Safe to Trust the Sender?

Yes, if Trustworthy Behavior is in Rational Sender's interest

Trust (Belief in <u>Rational</u> Sender's *Trustworthy Behavior*) => Sender's Present Value of all <u>Future</u> Sessions > unTw_s

<=>

Sender's discount rate = r < Tw_s / Gain_s

Safety

Safety

Present Value of all Future Sessions

 $= Tw_{S} + Tw_{S}/(1+r) + Tw_{S}/(1+r)^{2} + Tw_{S}/(1+r)^{3} + \dots = Tw_{s}(1+r)/r > unTw_{s}$

- Trust: $r < Tw_s/(unTw_s Tw_s) = Tw_s/Gain_s$ - no Trust: $r \ge Tw_s/Gain_s$
- VDG, June 20, 2012

- Tw_s/Gain_s -> 0 => no Trust
 - Gain_s >> Tw_s => $unTw_s$ /Tw_s >> 2
 - => few future sessions if any => no trust
 - e.g., possible scams, insider attacks
- $Tw_s/Gain_s \rightarrow + \infty \Rightarrow Trust$

 - => *rational* Sender has **no incentive to be untrustworthy**

Role of Collateral: Gain_s -> 0

(-) Non-starter: Sender has to post Collateral (for all Receivers)

(-) <u>Trusted</u> Third Party: a bootstrapping challenge

(+) **Deterrence**: rational Sender has <u>no</u> incentive to be unTW

(+/-) Acceptability: Loss_R ≤ Collateral => Receiver can recover

unacceptability: Receiver's Loss_R > Collateral => Receiver <u>could not</u> recover => Protocol would <u>not</u> start

+ Social Collateral: a Sender-Receiver Social Relation exists

e.g., friend, relative, classmate, co-worker, boss, co-conspirator...
 => (high) present value of future cooperation/sessions
 => Trust protocol always starts

+ A Trusted Third Party is unnecessary

Deterrence Hypothesis: Loss of Social Relations (i.e., loss of social collateral) deters more than the Law - some support in Hu et al., CACM, vol. 64, no. 6, 2011]

+ Deterrence:

- Sender's loss of social collateral reduces asymmetry of Trust protocol

+ Acceptability:

- the greater Receiver's exposure to Loss, the higher Social Collateral

Street-Level Semantics for Attribute Authentication

e.g., attributes:

- Identity
- Certificates
- Address/Location
- Social Connections
- Reputation/Credentials

Accepting an Attribute

Friendship: a social relation

- *built-in* social collateral
- "street-level" punishment/sanction = loss of future value

Accepting an Attribute

Attribute Authenticity => evidence of tie to Sender

=> strength of tie (social distance) to Sender

(communication frequency, recency, reciprocity, length, common acquaintance)

=>" street-level" punishment of 3rd party C (e.g., spoofed ID, false certificate)
=> loss of endorsement by Sender => loss of value at Receiver

Accepting an Attribute

Example 1: Accepting a 3rd Party Attribute (Certificate) signed by a Friend

Deterrence: SC(A) @ B – SC(C) @ A \geq P, where P \geq 0 measures friend A's *net loss of collateral* if {C, PK_c}^{SK_A} is false

Acceptability: $SC(C) @ A \ge T_{Bapp}$,

where T_{Bapp} measures loss incurred by **B**'s application if {**C**, **PK**_C}^{SKA} is false

B accepts A's authentication of {C, PK_C}^{SKA}

VDG, June 20, 2012

Visualization of "Tie Strength" Evidence

Visualizing Tie Strength

Carnegie Mellon

- Bob receives an "invitation" from 3rd Party Charlie
 - Charlie's "invitation" contains endorsed visual 'tie strength" evidence
- Bob accepts Charlie's "invitation" based on the social collateral it assigns to the "tie strength" between Alice and Charlie and David and Charlie

VDG, June 20, 2012

What Does Bob see?

CyLab Sec.

Visualized parameters:

- Frequency of communication (y axis)
- Length of relationship (x axis)
- Reciprocity of communication (circles)
- Selected mutual friends (individual graphs: Alice, David)
- Recency of interaction (leftmost points on x axis)

Usability: A Facebook Example

You and have 63 mutual friends. Communication Pattern Communication Pattern Communication Pattern Communication Pattern Communication Pattern Fighcharts.com Highcharts.com Highcharts.com Highcharts.com Highcharts.com Highcharts.com Communication between and your friend One-way communication, msty from to your friend	book 🖄	Search Q
Communication Pattern	o i ke	You and have 63 mutual friends.
6 4 4 4 4 4 4 4 4 4 4 4 4 4		Communication Pattern
0 Average 0.56 1 year 6 months 2 months 1 month 2 weeks 1 week Time Span Highcharts.com Image: Reciprocal communication between and your friend One-way communication, mstly from to your friend	 Mumber of Comments A ments Comments A ments A	
One-way communication, mostly from your friend to	0	Yerage 0.56 1 year 6 months 2 months 1 month 2 weeks 1 week Time Span Image 0.56 Bighcharts.com Image 0.56 Bighcharts.com Bighcharts.com I

• Mechanical Turk-based user study result: 93 participants

- 84.9% understood "tie strength" on our graph
- 90.3% would <u>not</u> accept "invitations" below the average communication frequency
- 60.2% felt in control of their privacy in confirming "strength of ties"
- 82.8% mentioned that our authentication application was easy to use
- 88.2% indicated that our visual evidence was useful
- 83.8% indicated that they would use our application before accepting "invitations"

1. Trust Correlates with Wealth

- countries where people *trust more* have *higher GDP*
- measured trust: *surveys* (e.g., German Socio-Economic Panel,

US General Social Survey, World Value Survey)

2. Network Interpretation

- <u>new</u> trust relations => larger pool of services, more cooperation, "network effect," increased competition, productivity, innovation, markets and ultimately <u>economic development/wealth</u>

3. New Focus For Security Research

- past: most security researchers have been merchants of fear! We're good at it!
- *future*: security infrastructures that promote <u>new</u> trust relations (and cooperation) Safety Analogy:
 - air breaks in railcars (1896), automated railways signals and stops (1882)
 - => safe increase in train speeds, railroad commerce, economic opportunities
- goal: seek security mechanisms that create new value, not just prevent losses

- 1. Systems Other roots of trust: software roots of trust
 - TPM are <u>not</u> useful for device controllers and power-challenged devices
 - explore security mechanisms without secrets
 - "simplify" provably complex (e.g., crypto) problems by using valid trust assumptions
- 2. Understand on-line deception and scams
 - initial work by Stajano and Wilson
 - interactive scams have trust-protocols w/ failed safety conditions
- 3. Explore machine learning techniques for scam detection
 - other areas than intrusion detection; e.g., advice to users
 - insider attacks explained
- 4. Trust Networks
 - explore social collateral and relations for deterrence and recovery