
Formal Modeling, Verification and
Refinement of Long Running

Transactions

Ji Wang

National Laboratory for Parallel and
Distributed Processing, Changsha, China

Joint work with Zhenbang Chen and Zhiming Liu

1

Agenda

Background and motivation

Compensating CSP (cCSP)

Non-determinism and deadlock

Livelock and refinement

Algebraic laws

Conclusion and next step

2

Long-Running Transactions

Database

Long-lived transactions

Small ACID transactions

SAGAS

1987, SIGMOD

Compensation
3

Compensation

4

a2

a3

b2

b3

In Database

An activity has its
compensation activity

a1 b1

In case of a failure,
use compensations

Atomicity and
consistency

Error -> Failure
5

In Distributed Computing

World wide distributed
organizations

Coordinate to accomplish
a task

How to ensure consistency in case of a failure?

Long Running Transactions

6

Orchestration Programming
in SOC

WS-BPEL
Compensation based fault handling

Flexible recovery mechanisms for LRTs

Fault Handler

WS-BPEL 2.0, OASIS Standard, 11 April 2007

Ensure an acceptive
consistency of composite

Web Services
Compensation

Handler

7

Orchestration Programming
in SOC

WS-BPEL
Compensation based fault handling

Flexible recovery mechanisms for LRTs

Formal languages
cCSP, StAC, SAGAs Calculi, etc.

8

Formal Modeling and
Verification

Modeling

Rigorous semantic foundation

Formal semantics for industrial languages

Basis for verification

Verification

Ensure the correctness of LRTs

Improve the reliability of LRT designs
9

Compensating CSP
(cCSP)

Michael Butler, C.A.R. Hoare and Carla Ferreira. A Trace Semantics for Long-
Running Transactions. 25 Years Communicating Sequential Processes, LNCS 3525,
2004.

10

Compensating CSP (cCSP)

Process language
CSP extension for modeling LRTs

Basic operators

Two types of processes
Standard & Compensable

Terminated trace semantics
11

cCSP Syntax and Example

[(a1÷b1;a2÷b2) ; throww]Example a1 a2 b2b1

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

12

cCSP Syntax and Example

[(a1÷b1;a2÷b2) ; throww]Example

a1

a2 b2

b1

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

12

cCSP Syntax and Example

[(a1÷b1;a2÷b2) ; throww]Example

a1 a2

b2b1

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

12

☹

cCSP Syntax and Example

[(a1÷b1;a2÷b2) ; throww]Example

a1 a2

b2b1

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

12

☹

cCSP Syntax and Example

[(a1÷b1;a2÷b2) ; throww]Example

a1 a2 b2

b1

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

12

☹

cCSP Syntax and Example

[(a1÷b1;a2÷b2) ; throww]Example

a1 a2 b2 b1

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

12

Terminated Trace Semantics

T(a) =def {<a, √>}
T(skip) =def {<√>} T(throw) =def {<!>} T(yield) =def {<√>,<?>}
T(P;Q) =def {s1 ; s2 | s1∈T(P), s2∈T(Q)}
T(P||Q) =def {s | ∃ s1∈T(P), s2∈T(Q), s∈s1 || s2}
T(P ⊳ Q) =def {s1 ⊳ s2 | s1∈T(P), s2∈T(Q)}

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

13

Examples

T(a) = {<a, √>}
T(a;b) = {<a, b, √>} T(a;throw;b) = {<a, !>}
T(a || b) = {<a, b, √>, <b, a, √>}
T((a;throw) || b) = {<a, b, !>, <b, a, !>}
T((a;throw) || (yield;b)) = {<a, !>, <b, a, !>, <a, b, !>}
T(a ⊳ b) = {<a, √>} T((a;throw) ⊳ b) = {<a, b, √>}

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

14

Terminated Trace Semantics

T(P÷Q) =def {s1÷s2 | s1∈T(P), s2∈T(Q)}

T(skipp) =def skip ÷ skip
T(throww) =def throw ÷ skip
T(yieldd) =def yield ÷ skip

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

if s1 = t^√, s1÷s2 = (s1, s2), else (s1, <√>)

T(a÷b) = {(<a,√>, <b,√>)}
T((a;throw)÷b) = {(<a,!>, <√>)}

Examples

15

Terminated Trace Semantics

T(PP;QQ) =def {(p, p’) ; (q, q’) | (p, p’)∈T(P), (q, q’)∈T(Q)}

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

if p = t^√, (p, p’) ; (q, q’) = (p;q, q’;p’),
else, (p, p’) ; (q, q’) = (p, p’),

T(a1÷b1;a2÷b2) = {(<a1,a2,√>, <b2,b1,√>)}
16

Terminated Trace Semantics

T([PP])=def{s1^s2 | (s1^!,s2)∈T(PP)}⋃{s1^√ | (s1^√,s2)∈T(PP)}

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

T([a÷b;throww])={<a, b, √>}
T(a÷b) = {(<a, √>, <b, √>)} T([a÷b]) = {<a, √>}

Examples

T(a÷b;throww)={(<a, !>,<b, √>)}
17

☹

Semantics Example

[(a1÷b1;a2÷b2) ; throww]Example

a1 a2 b2 b1

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

Trace Semantics: {<a1,a2,b2,b1,√>}
18

Theoretical Issues of
cCSP

Concurrent systems
Non-determinism & Deadlock & Livelock

Reason
Trace semantics, no synchronization, no recursion

Refinement

P ::= a | P ;P | P�P | P�P | P�P | [PP] | skip |
throw | yield

PP ::= P÷P | PP ;PP | PP�PP | PP�PP | PP�PP |
skipp | throww | yieldd

19

Non-determinism and
Deadlock

Zhenbang Chen and Zhiming Liu. An Extended cCSP with Stable Failures
Semantics. 7th International Colloquium on Theoretical Aspects of Computing
(ICTAC’10), LNCS 6255, 2010.

20

Non-determinism &
Deadlock

Extend the syntax of cCSP

Internal and external choices

Synchronization, hiding and renaming

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd
21

Non-determinism &
Deadlock

Extend the syntax of cCSP

Internal and external choices

Synchronization, hiding and renaming

A stable failures semantics

Use refusals to model deadlocks

22

Basic Idea of a
Failure-based Semantics

(s, X)

One trace s that a
process can execute

The set of the events that the
process refuses to perform after

executing s

a ; b
refuse to execute any

event except a
refuse to execute
any event except b

refuse to execute
any event except √

refuse to execute
any event finally

{(<>, X) | a∉X } {(<a>, X) | b∉X } {(<a, b>, X) | √∉X } {(<a,b,√>, X) | X⊆∑}⋃ ⋃ ⋃

A process deadlocks if it refuses to perform any event after executing
a non-terminated trace

A failure

23

Semantic Models

Standard processes

Compensable processes

〚PP〛= (T, F, C)

〚P〛= (T, F)

Failure set, Fs(P)Trace set, Ts(P)

Forward
Failure set, Fc(PP)

Forward Trace
set, Tc(PP)

Compensation Set,
C(PP), (s, T, F)

24

Semantics (1)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

Ts(a)={<>, <a>, <a,√>}
Fs(a)={(<>,X) | a∉X} ⋃ {(<a>, X) | √∉X} ⋃ {(<a,√>, X)}
 where X⊆∑⋃{!,?,√}

Ts(stop)={<>}
Fs(stop)={(<>,X) | X⊆∑⋃{!,?,√}}

25

Semantics (2) - Internal
and External Choices

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

Difference is at the beginning

1. Internal choice will refuse an event if any sub process can refuse it
2. External choice will refuse an event if both sub processes can refuse it

26

Semantics (2) - Internal
and External Choices

Fs(P⊓Q) = Fs(P) ⋃ Fs(Q)

Fs(P□Q) = {(<>, X) | (<>, X) ∈ Fs(P)⋂Fs(Q)} ...

Ts(P⊓Q) = Ts(P) ⋃ Ts(Q)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

Ts(P□Q) = Ts(P) ⋃ Ts(Q)

27

Semantics (2) - Internal
and External Choices

∑ = {a, b}
Fs(a⊓b)={(<>,X) | X⊆{b,!,?,√}} ⋃ {(<>,X) | X⊆{a,!,?,√}} ...

Fs(a□b)={(<>,X) | X⊆{!,?,√}}...

Ts(a□b)={<>, <a>, <a,√>, , <b,√>} = Ts(a⊓b)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

28

Semantics (3) -
Synchronization

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

1. Parallel composition with synchronization on X can refuse an event out
 of X if both sub processes can refuse it
2. Parallel composition with synchronization on X can refuse an event in X
 if any sub process can refuse it

29

Semantics (3) -
Synchronization

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

Fs(P||Q) = {(s, X1⋃X2) | ∃ (s1, X1) ∈ Fs(P), (s2, X2) ∈ Fs(Q),
 X1 \ (X⋃W) = X2 \ (X⋃W) ⋀ s ∈ s1 || s2 } ...

x
x

where W = {!,?,√}

30

Semantics (3) -
How to have a deadlock

No synchronization, no deadlock

Fs(a || b) is {(<>,X) | X⊆{a,b,!,?,√}}, i.e. Fs(stop)
{a,b}

Fs(a)={(<>,X) | a∉X} ⋃ {(<a>, X) | √∉X} ⋃ {(<a,√>, X)}
Fs(b)={(<>,X) | b∉X} ⋃ {(, X) | √∉X} ⋃ {(<b,√>, X)}

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

31

Semantics (4)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

〚a÷b〛= (Ts(a), Fs(a), { (<a,√>, Ts(b), Fs(b)) })

C((a⊓(a;throw))÷b) = { (<a,√>, Ts(b), Fs(b)),
 (<a,!>, Ts(skip), Fs(skip)) }
〚[a÷b]〛= (Ts(a), Fs(a)) 32

Semantic (5)

〚PP⊓QQ〛=def (T1⋃T2, F1⋃F2, C1⋃C2)

〚PP□QQ〛=def (Ts(PPf□QQf), Fs(PPf□QQf), C1⋃C2)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

Trace set function of P Failure set function of P
33

Semantics (5) - Example

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

☹
[(a1÷b1⊓a2÷b2) ; throww]Example

a1

a2 b2

b1

☹ (a1;b1)⊓(a2;b2)
34

Semantics (6)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

〚PP;QQ〛=def (Ts(PPf;QQf), Fs(PPf;QQf), C)
C =def {(s, T, F) | ∃ (s1, PPc) ∈ C(PP), (s2, QQc) ∈ C(QQ),
 (s1=t^√ ⋀ s=t^s2 ⋀ T=Ts(QQc ; PPc) ⋀ F=Fs(QQc ; PPc))⋁
 (s1≠t^√ ⋀ s=s1 ⋀ T=Ts(PPc) ⋀ F=Fs(PPc))}

35

☹

Semantics (6) - Example

[(a1÷b1;a2÷b2) ; throww]Example

a1 a2 b2 b1 a1 ; a2 ; b2 ; b1

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

36

☹

Semantics (6) - Example

[(a1÷b1;a2÷b2) ; throww]Example

a1 a2 b2 b1 a1 ; a2 ; b2 ; b1

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

〚a1÷b1;a2÷b2〛= (Ts(a1;a2), Fs(a1;a2), {(<a1,a2,√>, Ts(b2;b1), Fs(b2;b1))})
36

Semantics (7)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

〚PP||QQ〛=def (Ts(PPf||QQf), Fs(PPf||QQf), C)
X X X

C =def {(s, T, F) | ∃ (s1, PPc) ∈ C(PP), (s2, QQc) ∈ C(QQ),
 s ∈ (s1||s2) ⋀ T = Ts(PPc||QQc) ⋀ F = Fs(PPc||QQc)}

X X X
37

||
{a1,a2}

Example [(a1÷b1||a2÷b2)]
{a1,a2}

a1 a2 Deadlock!!

b2b1

Semantics (7) - Example

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

Semantics: {(<>, X) | X⊆Σ}
38

Semantics (7) - Example

Example [(a÷b1||a÷b2) ; throww]
{a}

a a b2 b1{a}
||

{a}
||

☹
b1 b2

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP \X |

PP �R� | skipp | throww | yieldd

39

Summary Until Now

An extension to cCSP

Non-determinism

Synchronized parallel composition

A new semantic model for the extended cCSP

Non-determinism and deadlock modeling

Zhenbang Chen and Zhiming Liu. An Extended cCSP with Stable Failures
Semantics. 7th International Colloquium on Theoretical Aspects of Computing
(ICTAC’10), LNCS 6255, 2010.

40

Livelock and Refinement

Zhengbang Chen, Zhiming Liu and Ji Wang. Failure-Divergence Refinement of
Compensating Communicating Processes. 17th International Symposium on
Formal Methods (FM’11), LNCS 6664, 2011.

Zhengbang Chen, Zhiming Liu and Ji Wang. Failure-Divergence Semantics and
Refinement of Long Running Transactions. Theoretical Computer Science
(TCS), 2012

41

Livelock & Refinement
No recursion

Cannot model divergence, i.e. livelock

Hard for a denotational semantics

Refinement is hard to define w.r.t.
the stable failures model

Design by refinement for LRTs

42

Livelock & Refinement

Extend language

Recursive processes

Speculative choice

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

43

Livelock & Refinement

Extend language

Recursive processes

Speculative choice

A failure-divergence semantics

Support recursion interpretation

Use recursions to model livelocks

Refinement definition
44

Basic Idea of a
Failure-Divergence Semantics

A failure is (s, X)

One trace s that a
process can execute

The set of the events that the
process refuses to perform after

executing s

A divergence is a trace s

1. The process enters a chaos state after executing s
2. The process is totally unpredictable, i.e. it can perform or
refuse any event
3. Use DIV to denote the process that diverges immediately

45

Basic Idea of a
Failure-Divergence Semantics

A divergence is suffix closed

A divergent process can refuse any event

A terminated divergence must be generated by
a non-terminated divergence

s∈D(P)⋂∑* => s^t∈D(P)

s∈D(P) => (s, X)∈F(P), where X⊆∑⋃{!,?,√}

s^w∈D(P) => s∈D(P), where w⊆{!,?,√}
46

Standard Processes
Semantic model

〚P〛= (F, D)

Failure set, F(P)

D(a) = {}
D(DIV) contains <>, i.e. D(DIV) contains any traces

P1 ⊑ P2 =def F1 ⊇ F2 ⋀ D1 ⊇ D2

Examples for divergence sets

Refinement of standard processes

47

Divergence set, D(P)

How to have a livelock

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

No recursion, no divergence

(μp. (a ; p)) \ {a} is equal to DIV
(μp. (a ; p)) executes a infinitely

48

Semantic Models

Standard processes

Compensable processes

〚PP〛= ???

〚P〛= (F, D)

Divergence set, D(P)Failure set, F(P) � �

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

49

Ways to Go

Based on an existing one
Stable failures model

Build a new model

Find it out

50

Problems
We failed on the first way

Compensable processes

Complete lattice or CPO?
Refinement order?

〚PP〛= (T, F, C)

〚PP〛= (F, D, C)

(s, T, F)

(s, F, D)Extension

51

Working Process and
Final Result

Search and tradeoff
Semantic model and algebraic laws

Refinement and fixed-point theory

〚PP〛???

(F, D, Fc, Dc)

(s, s’, X) (s, s’)

☺

52

Order and Properties

The order is easy to understand

The domain is a CPO w.r.t. the order

The order is natural for refinement

(F1, D1, Fc1, Dc1)⊑c(F2, D2, Fc2, Dc2)

F1⊇F2 D1⊇D2 Fc1⊇Fc2 Dc1⊇Dc2⋀ ⋀ ⋀

53

Semantic Models

Standard processes

Compensable processes

〚PP〛= (F, D, Fc, Dc)

〚P〛= (F, D)

Forward
Divergence set, Df(PP)

Forward Failure
set, Ff(PP)

Divergence set, D(P)Failure set, F(P)

54

Semantic Models

Standard processes

Compensable processes

〚PP〛= (F, D, Fc, Dc)

〚P〛= (F, D)

Divergence set, D(P)Failure set, F(P)

Compensation
Divergence set, Dc(PP)

Compensation
Failure set, Fc(PP)

55

Semantics (1)

〚a÷b〛= (F(a), {}, {<a,√>}×F(b), {})

Fc((a⊓(a;throw))÷b) = {<a,√>}×F(b) ⋃ {<a,!>}×F(skip)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

56

Semantics (2)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

〚μpp.FF(pp)〛= ⊔{FFn(DIV÷DIV) | n∊N}

Least fixed-point semantics
The operators are continuous

57

Semantics (2) - Example

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

[μpp.(a÷b;pp) ; throww]Examples
a a
b b

a
b

a
b

a
b

... Not terminated

〚μpp.(a÷b;pp)〛= (〚μp.(a;p)〛,{},{})
58

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples [(a1÷b1⊠(a2÷b2;throww));throww]

a1 a2 ☹b2 b1throw|| ;

(a1 || a2) ; b2 ; b159

||

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples [(a1÷b1⊠a2÷b2);throww]

a1 a2
☹ b2b1

b2 b1
60

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples
[((a1÷b1;throww)⊠(a2÷b2;throww)) || (a3÷b3)]a2 b2 throw;a1 b1 throw; a3 b3

61

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples
[((a1÷b1;throww)⊠(a2÷b2;throww)) || (a3÷b3)]

a2

b2

throw|| ;a1

b1

throw;

a3 b3

61

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples
[((a1÷b1;throww)⊠(a2÷b2;throww)) || (a3÷b3)]

a2

b2

throw|| ;a1

b1

throw;

a3 b3

(a1 || a2) ; throw
61

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples
[((a1÷b1;throww)⊠(a2÷b2;throww)) || (a3÷b3)]

a2

b2

throw|| ;a1

b1

throw; a3

b3

||(a1 || a2) ; throw
61

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples
[((a1÷b1;throww)⊠(a2÷b2;throww)) || (a3÷b3)]

a2 ☹
b2

throw|| ;a1

b1

throw; a3

b3

||(a1 || a2) ; throw(a1 || a2 || a3)

61

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples
[((a1÷b1;throww)⊠(a2÷b2;throww)) || (a3÷b3)]

a2 ☹ b2throw|| ;a1 b1throw; a3 b3|| ||||(a1 || a2) ; throw(a1 || a2 || a3)

61

Semantics (3)

P ::= a | P ;P | P � P | P�P | P �
X

P | P \X | P �R� | P � P | [PP] |

skip | stop | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP � PP | PP�PP | PP �
X

PP | PP � PP |

PP \X | PP �R� | skipp | throww | yieldd | µ pp.FF (pp)

Examples
[((a1÷b1;throww)⊠(a2÷b2;throww)) || (a3÷b3)]

a2 ☹ b2throw|| ;a1 b1throw; a3 b3|| ||||(a1 || a2) ; throw(a1 || a2 || a3)

(a1||a2||a3);(b1||b2||b3) 61

Livelock & Refinement
All basic concurrent features

Divergence for livelock

A failure-divergence semantics
Fixed-point theory

Refinement w.r.t the semantics
Non-determinism

Zhengbang Chen, Zhiming Liu and Ji Wang. Failure-Divergence Semantics and
Refinement of Long Running Transactions. Theoretical Computer Science
(TCS), 2012

62

Algebraic Laws

Zhengbang Chen, Zhiming Liu and Ji Wang. Failure-Divergence Semantics and
Refinement of Long Running Transactions. Theoretical Computer Science
(TCS), 2012

63

Algebraic Laws of Standard
Processes

64

Idempotence

Some Still Valid CSP laws

P ⊓ P = P
P □ P = P

P ⊓ Q ⊑ P DIV ⊑ P

Refinement

Units and zeros
skip ; P = P
stop □ P = P
P \ {} = P
stop ; P = stop
DIV ⊓ P = DIV

65

Units and zeros

Distribution and association

Exception Handling

throw ⊳ P = P
P ⊳ throw = P
skip ⊳ P = skip

P ⊳ (Q⊓R) = (P ⊳ Q)⊓(P ⊳ R)
(P⊓Q) ⊳ R = (P ⊳ R)⊓(Q ⊳ R)
P ⊳ (Q ⊳ R) = (P ⊳ Q) ⊳ R

throw ; P = throw
yield ⊳ P = yield
stop ⊳ P = stop

66

Parallel Composition

If P does not terminate with a yield
terminal event

throw || P = P ; throw
throw || (yield ; P) = throw⊓(P ; throw)

Unit and zeros
throw || skip = throw
throw || yield = throw

P || skip = P

x
x

67

Algebraic Laws of
Compensable Processes

68

Basic Algebraic Laws
Units and zeros

Distribution

skipp ; PP = PP
PP ; skipp = PP

 throww ; PP = throww

[PP⊓QQ] = [PP]⊓[QQ]
 P÷(Q⊓R) = (P÷Q)⊓(P÷R)
 (P÷Q)\X = (P\X)÷(Q\X)

69

Refinement Laws

Consistently related

PP1 ⊑c PP2 => [PP1] ⊑ [PP2]

Reduction

Q1 ⊑ Q2 => P÷Q1 ⊑c P÷Q2

P1 ⊑ P2 => P1÷Q ⊑c P2÷Q

PP ⊓ QQ ⊑c PP

70

Compensation Laws (1)

If P1 and P2 do not result in an
exception

[P1÷Q1 ; throww] = P1 ; Q1

[P1÷Q1 ; P2÷Q2 ; throww] = P1 ; P2 ; Q2 ; Q1

P2 Q2

P1 Q1
The laws are still

valid when P1 is YIELD

71

Compensation Laws (2)
If all the standard processes
terminate successfully and do not
diverge

[(P÷Q)||throww] = P ; Q

[(P1÷Q1⊠P2÷Q2) ; throww] =
 (P1||P2) ; ((Q1 ; Q2)⊓(Q2 ; Q1))

P1÷Q1 || P2÷Q2 = P1 || P2 ÷ Q1 || Q2
X X X

72

Interruption Laws
If all the standard processes do not
diverge and terminate successfully

[(yieldd;P1÷Q1;yieldd;P2÷Q2)||throww] =
skip ⊓ (P1 ; Q1) ⊓ (P1 ; P2 ; Q2 ; Q1)

[(yieldd;P1÷Q1)||(yieldd;P2÷Q2)||throww] =
skip⊓(P1 ; Q1)⊓(P2 ; Q2)⊓((P1 ||P2);(Q1 ||Q2))

yieldd must be used to
specify interruption places

73

Conclusion & Ongoing Work

A semantic theory for LRTs
Non-determinism, deadlock and livelock

Design by refinement

Reasoning LRTs by algebraic laws

Ongoing work
PAT based model checker for extended cCSP

Application of the theory, e.g., BPMN
74

Thank you!

End

75

