
Scalable Software Testing for Android: Challenges & Opportunities

Angelos Stavrou & Jeff Voas George Mason University & NIST

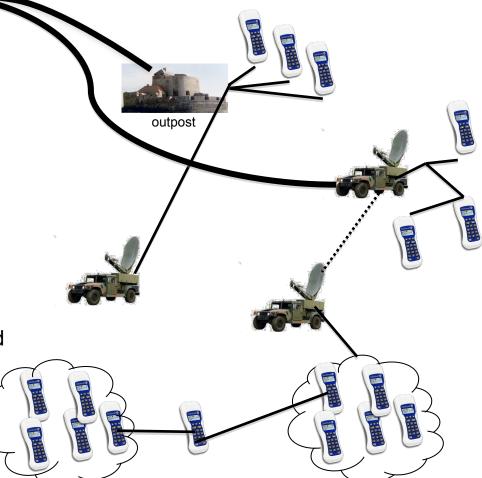
CIO Business Priorities

Top 10 CIO Business and Technology Priorities in 2012

Top 10 Business Priorities	Ranking	Top 10 Technology Priorities	Ranking
Increasing enterprise growth	1	Analytics and business intelligence	1
Attracting and retaining new customers	2	Mobile technologies	2
Reducing enterprise costs	3	Cloud computing (SaaS, IaaS, PaaS)	3
Creating new products and services (innovation)	4	Collaboration technologies (workflow)	4
Delivering operational results	5	Legacy modernization	5
Improving efficiency	6	IT management	6
Improving profitability (margins)	7	CRM	7
Attracting and retaining the workforce	8	ERP applications	8
Improving marketing and sales effectiveness	9	Security	9
Expanding into new markets and geographies	10	Virtualization	10

Source: Gartner Executive Programs (January 2012)

High-Level Project Overview


App Developers

> App Store

Vetted apps ultimately go into an app store.

Banks

- Backflows of user feedback and in-field test data.
- If feedback is good, an app becomes app store accepted, and money is deposited; otherwise, a new version from the developers needed.

Why Do I Care?

Commercial Mobile Devices have access to a wide-range of functionality and ship with complex code-base:

- Fully Functional Linux system
- Proprietary device drivers with NO access to code
- Permissive policy model
- Capability to perform a wide range of operations
 - 3 (three) different types for location tracking
 - Many more through meta-data (geo-tagging)

BUT, I am secure: I am using Anti-Virus!!! Right?

Current Mobile Anti-Virus

Commercial AV vendors are not ready for mobile:

- Drain battery quickly
- Similar Results with their Desktop Counterparts
- There are no guaranteed for success in detection
 - Cannot Identify non-preclassified threats
 - CarrierIQ is an example, a "benign" and "legitimate" application
 - Some of them "call-back" home and require constant updates

But is it that bad?

The real picture: Malicious Apps exist...

Analyzed ~267,000 Applications from the Google Android Market

- Thousands with incorrect/permissive manifest
- Hundreds with excessive functionality that can be constituted as malicious
- Hundreds of Trojans (i.e. take over existing, legitimate applications)
 - Who will download these apps?
 - People who use SEARCH to find apps
 - Virtually everyone...
 - Two infection vectors:
 - Regular Web Search
 - Search inside the Mobile App Market

The real picture: Malicious Apps exist...

A multifaceted problem:

- Developers maybe well-intended but...
 - They do not necessarily understand the mission or the security/policy requirements
 - They make mistakes
 - They use third-party libraries and code
- The Android permission model is neither sound nor complete
 - Intentions, Reflection, JNI, Webkit, others...
 - Android permissions are enforced inside Dalvik not everywhere in the device

What about existing Analysis Tools?

- Commercial application testing tools cover regular, non-Android specific Bugs:
 - No Security Analysis of the Code Functionality
 - No Power Analysis of the Application components and code
 - No Profiling of the resource consumption of individual applications
 - Cannot Regulate/Deny the access and use of phone subsystems (Camera, Microphone, GPS..)
- Existing tools do not cover Program
 Functionality
 - We reveal the application capabilities and access

Application Testing Framework

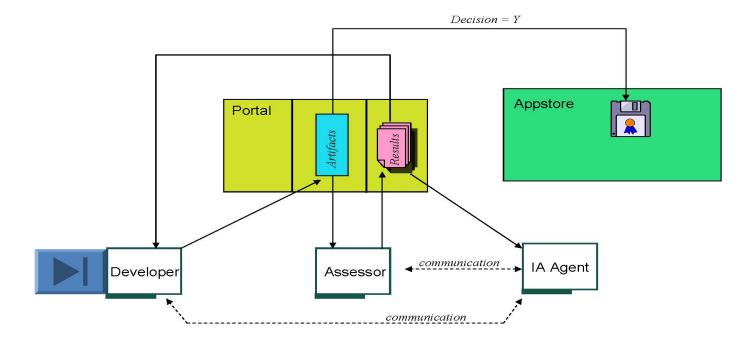
Application Static Analysis does not cover Program Functionality

Fortify, Coverity, and other application testing tools cover regular, non-Android **specific Bugs**:

- No Security Analysis of the Code Functionality
- No Power Analysis of the Application components and code
- No **Profiling** of the resource consumption of individual applications
- Cannot Regulate/Deny the access and use of phone subsystems (Camera, Microphone, GPS..)

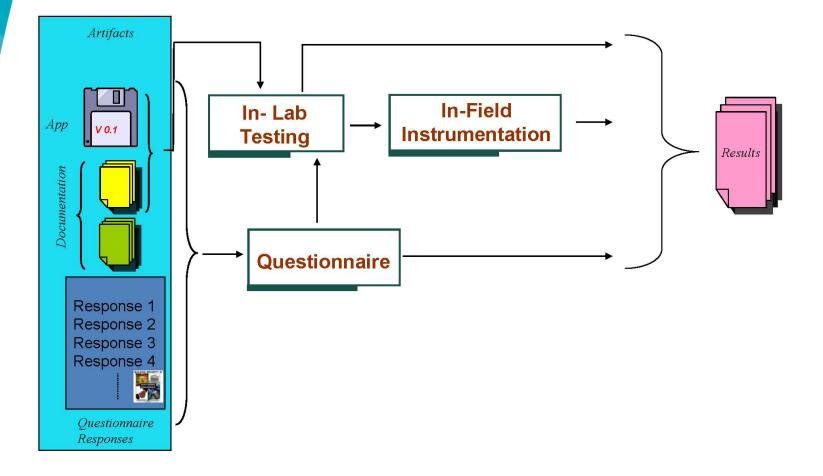
it

App Vetting & Control

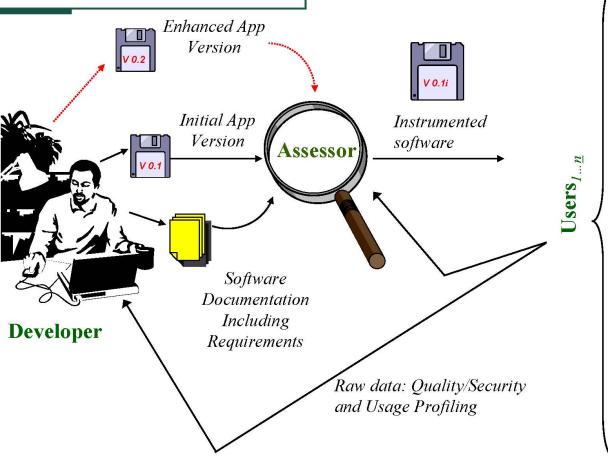

- App Signing Prevent unauthorized App Execution
 - Approved Apps are signed by the program designated approval authority
 - Only program signed Apps can be installed on the device
 - Customizations made to Android package framework
- App Analysis & Testing
 - All Apps are analyzed for malware and potential vulnerabilities
 - AV Scans
 - Vulnerability Scans (Fortify)
 - Expose hidden & unwanted functionality
 - Hidden in Native Libraries
 - Dynamic or obfuscated code
 - Permissions manifest reconciliation against code

National Institute of Standards and Tech

Application Vetting: Big Picture



Progression of Testing



In-Field Instrumentation Process

Android Application Control

- Application Signing Prevent unauthorized App Execution
 - Approved Apps are signed by the program designated approval authority
 - Only program signed Apps can be installed on the device
 - Customizations made to Android package framework
- Application Stress Testing
 - Measure Power Consumption
 - Identify Input Errors / Find UI bugs

Application Analysis Framework

- Android Specific Analysis includes analysis of the Application Security Manifest
 - Tailored to the Android Permission Model
- Verify if the requested permissions are warranted by the submitted code
 - Remove excessive permissions & enforce a tighter security model
- Regulate access to critical/restricted resources
 - Modifications on the Android Engine to enable dynamic policies
 - Control the underlying Dalvik engine to report absence/depletion of resources instead of lack of permissions

TU

Application Policy Enforcement

Solution: Per Application Policy Enforcement

Provide Dalvik mechanisms to

- Enforce application Access & Capabilities
 - Tailored to specific Location or Time
 - Tailored to specific Mission
- Application can still be installed but deprived access to resources and data selectively

Policy Enforcement paired with Device Security can significantly reduce the risk of **Data Exfiltraction**

2 Application Testing Framework

Android Specific Analysis includes analysis of the Application Security Manifest (not supported by third-party vendors)

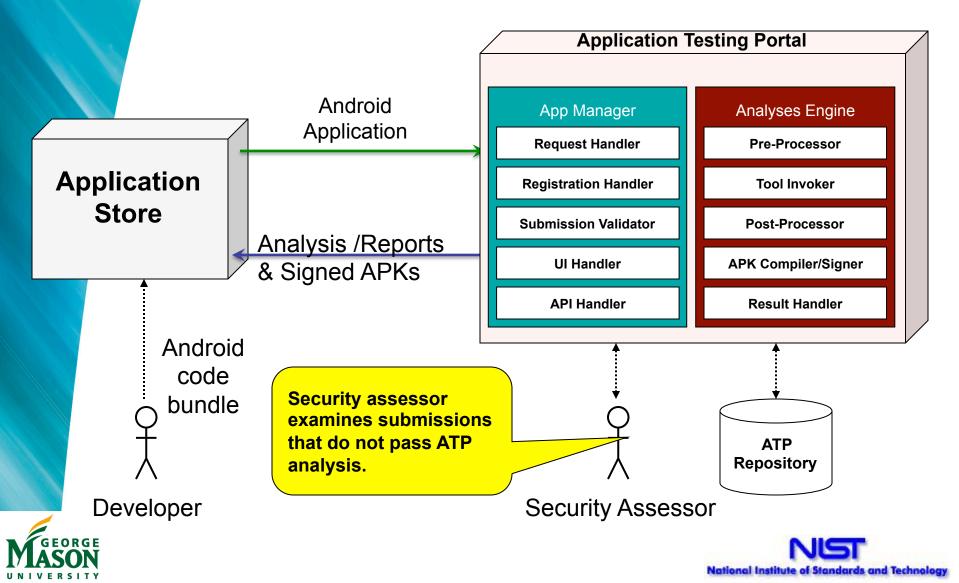
- Tailored to the Android Permission Model
- Verify if the requested permissions are warranted by the submitted code
- Curtails excessive permissions and enforces a tighter security model

Modifications on the Android Engine to enable dynamic policies

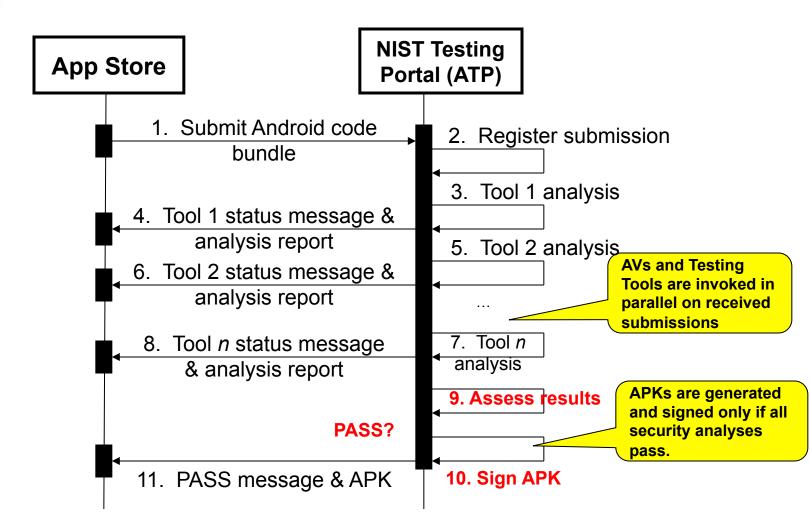
- Control the underlying Dalvik engine to report absence/depletion of resources instead of lack of permissions
- Regulate access to critical/restricted resources

Power Metering Framework

- Design & Implement an accurate model for accounting and policing energy consumption
- Two-pronged approach
 - Meter the per-process CPU & Device utilization over time
 - Identify the relative impact of each device component on energy consumption
- Design an Android kernel subsystem to estimate energy
 - Meter energy consumption for each App/process
 - Use for characterizing application behavior
 - This behavior is Application dependent
 - Sometimes the behavior is also User dependent

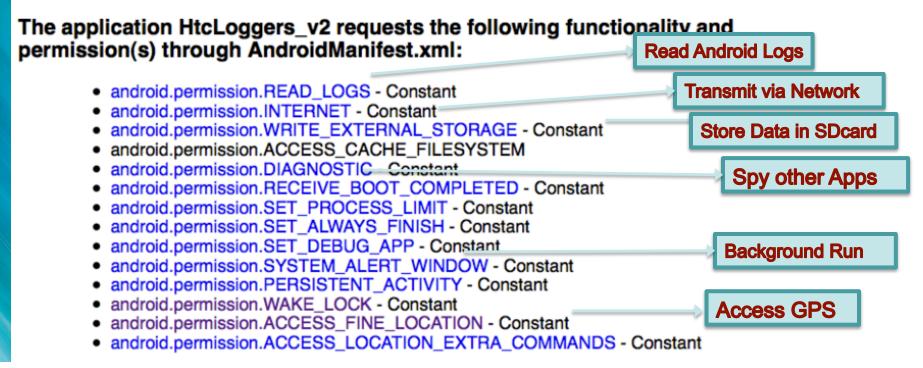


ATP Architecture


ATP analyzes Android code bundles and returns messages, analysis reports, and signed APKs

Mobilize-ATP Workflow (PASS Use-Case)

ATP applies Testing to Analyze Android code bundles



Analysis of HTC Logger (CarrierIQ)

Failed: Application Appears to be Using a Different Functionality than what is requested. There is presence of code obfuscation.

23

National Institute of Standards and Technolog

ATP Monitor

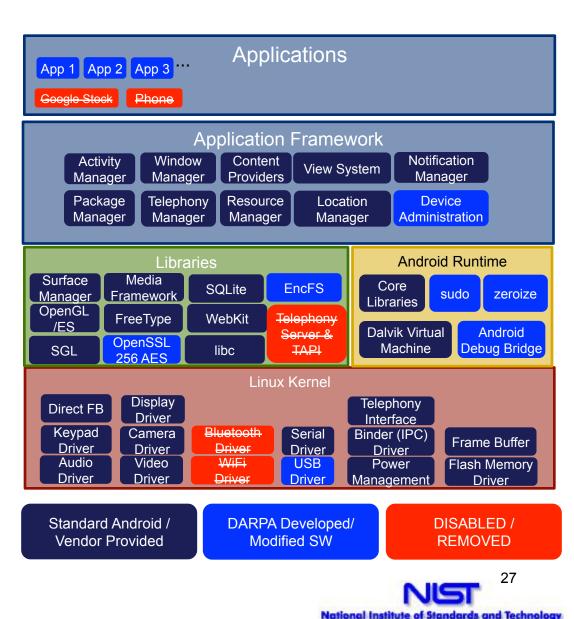
			pp Testing Portal X			ĥ
eq logged in	vpp re	sting Por	lai			
Contents			Regis	tered Apps		
/iewApps	App ID	Name	Submitted	Status	Submitter	Approved
SubmitApp Account Documents Log out	3665043	Illumination-test	2011-11-16 14:44:26.0	ANDROID COMPILE ERROR	cnri	REJECTED
	7238834	Illumination-test	2011-11-16 14:54:47.0	ANDROID COMPILE ERROR	cnri	REJECTED
	1423329	Illumination-test	2011-11-16 14:56:26.0	ANDROID UPDATE OK	cnri	TBD
	5766277	Illumination-test	2011-11-16 15:09:31.0	ANDROID COMPILE ERROR	cnri	REJECTED
	130670	DariToEnglish2.3	2011-11-16 15:10:53.0	ANALYSIS COMPLETE	cnri	APPROVED
	426641	Illumination-test	2011-11-16 15:33:06.0	ANDROID COMPILE ERROR	cnri	REJECTED
	8276571	DariToEnglish2.3	2011-11-16 15:34:34.0	ANALYSIS COMPLETE	cnri	APPROVED
	6052763	Illumination-test	2011-11-16 16:17:04.0	ANDROID COMPILE ERROR	cnri	REJECTED
	6489049	Illumination-test	2011-11-16 16:20:23.0	ANDROID COMPILE ERROR	cnri	REJECTED
	8460629	DariToEnglish2.3	2011-11-16 16:58:59.0	ANALYSIS COMPLETE	steveq	APPROVED
	5809194	Illumination-test	2011-11-17 09:59:41.0	ANALYSIS COMPLETE	cnri	APPROVED
	5560815	DariToEnglish2.3	2011-11-17 10:34:36.0	ANALYSIS COMPLETE	cnri	APPROVED
	6130090	Illumination-test	2011-11-17 10:46:40.0	ANALYSIS COMPLETE	cnri	APPROVED
	9740421	Illumination-test	2011-11-17 11:45:20.0	ANDROID COMPILE ERROR	cnri	REJECTED
	982873	DariToEnglish2.3	2011-11-17 11:47:03.0	ANALYSIS COMPLETE	cnri	APPROVED
	101711	Illumination-test	2011-11-17 12:50:58.0	ANDROID COMPILE ERROR	cnri	REJECTED

Defense in-Depth: Multiple Levels of Security

- Application Vetting & Testing
- Device Lock-down and Encryption of ALL Data and Communications
- Enforcement of Security Policies in the Android Framework
- Second-level Defenses placed in the Android Linux Kernel
 - Prevent Attacks that bypass Android Security Framework
 - Android has Inherited some (if not all) of the Linux Vulnerabilities
 - Java Native Interface to Linux Libraries a potential Avenue for Exploitation

Risks in Mobile Security Supply Chain TP MDM/Middleware **Devices Providers** Multi-Level Mobile Phone Security Architecture Enterprise Security Google Applications Services User Space Enterprise Security airwatch Android is a custom JVM (DALVIK) running on modified Linux Firefox 3 USB, WiFi, GPRS, Bluetooth, GPS l Device Provisioning mobile device management Encryption Layer for I/O Х Kernel Space Policy Manager (Profiling & Policing) Enterprise Security Good I/O Devices A: A (USB, WiFi, GPRS, Bluetooth, Internal Flash, SD card) 🙆 Firefox 3 Mutual Authentication Enforce SE-Linux Policies on Data Flows for Android Apps 1.0 & Encryption of Prevent unauthorized Hardware Flows (USB, Network, FS) Wired and Wireless come Enterprise Security 😺 Firefox ZENPRISE Enterprise Security **Secure Verify Test Deploy** Firefox 3 SAMSUNG MOTOROLA National Institute of Standards and Technology

UNIVERSITY

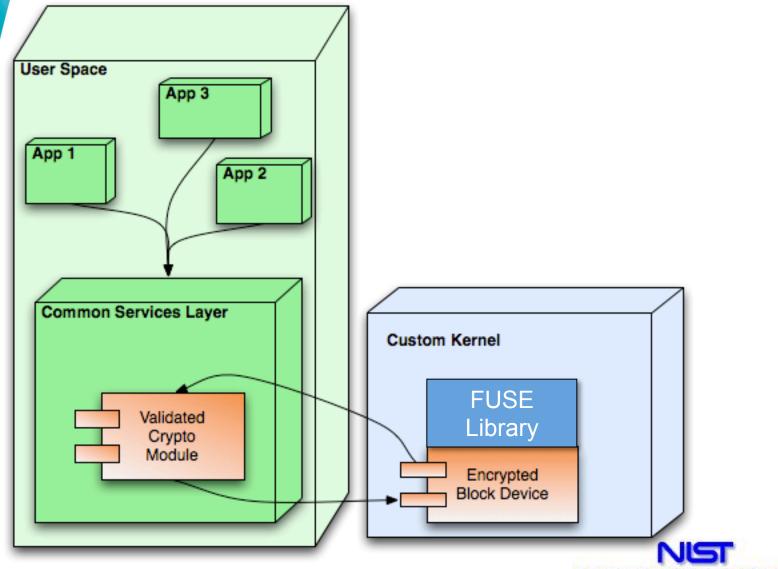

Hardened Android Platform

Custom modified Android OS and Linux Kernel

- Additions, deletions, and modifications
- Preference towards Open Source Solutions

Security Stack

- Data At Rest Encryption
- Data In Transit Protections
- Authentication
- App Vetting and Control
- Device Integrity Checks



Encrypted File System

EORGE

UNIVERSITY

Application Policy Enforcement

Ultimately the Testing assists in POLICY Enforcement

- Tailored to the Android Permission Model
- Can allow Location-Based Policies
- Curtails excessive permissions and enforces a tighter security model

Modifications on the Android Engine to enable dynamic policies

- Control the underlying Dalvik engine to report absence/depletion of resources instead of lack of permissions
- Regulate access to critical/restricted resources

Conclusions

Assuring the Secure Operation of Smart Devices has a wide-range of requirements

- Application Testing
 - Static & Dynamic
 - In-Field Instrumentation
 - Power Behavior Metering & Policing

Physical Device Security
Lock-Down of the Device I/O (USB, WiFi, etc.)
Encryption of Data both on the Phone & Network
Securing Provisioning Process

National Institute of Standards and Tech

Thank you!

Questions ?

