
Scalable Software Testing for
Android: Challenges & Opportunities

Angelos Stavrou & Jeff Voas
George Mason University & NIST

Maturity of Technologies (source Gartner)

CIO Business Priorities

High-Level Project Overview

outpost

App
Developers

App
Store

Banks

•  Vetted apps ultimately go into an app
store.

•  Backflows of user feedback and in-field
test data.

•  If feedback is good, an app becomes
app store accepted, and money is
deposited; otherwise, a new version
from the developers needed.

Why Do I Care?

Commercial Mobile Devices have access to a
wide-range of functionality and ship with
complex code-base:
•  Fully Functional Linux system
•  Proprietary device drivers with NO access to code
•  Permissive policy model
•  Capability to perform a wide range of operations

•  3 (three) different types for location tracking
•  Many more through meta-data (geo-tagging)

BUT, I am secure: I am using Anti-Virus!!! Right?

Current Mobile Anti-Virus

Commercial AV vendors are not ready for
mobile:

•  Drain battery quickly
•  Similar Results with their Desktop Counterparts
•  There are no guaranteed for success in detection

•  Cannot Identify non-preclassified threats
•  CarrierIQ is an example, a “benign” and “legitimate”

application
•  Some of them “call-back” home and require constant

updates

But is it that bad?

The real picture: Malicious Apps exist...

Analyzed ~267,000 Applications from the
Google Android Market

•  Thousands with incorrect/permissive manifest
•  Hundreds with excessive functionality that can

be constituted as malicious
•  Hundreds of Trojans (i.e. take over existing,

legitimate applications)
•  Who will download these apps?
•  People who use SEARCH to find apps
•  Virtually everyone…
•  Two infection vectors:

- Regular Web Search
- Search inside the Mobile App Market

The real picture: Malicious Apps exist...

A multifaceted problem:

v  Developers maybe well-intended but…
v They do not necessarily understand the mission

or the security/policy requirements
v They make mistakes
v They use third-party libraries and code

v  The Android permission model is neither
sound nor complete

v  Intentions, Reflection, JNI, Webkit, others…
v  Android permissions are enforced inside

Dalvik not everywhere in the device

What about existing Analysis Tools?

•  Commercial application testing tools cover
regular, non-Android specific Bugs:
–  No Security Analysis of the Code Functionality
–  No Power Analysis of the Application

components and code
–  No Profiling of the resource consumption of

individual applications
–  Cannot Regulate/Deny the access and use of

phone subsystems (Camera, Microphone, GPS..)
•  Existing tools do not cover Program

Functionality
–  We reveal the application capabilities and access

9

Application Static Analysis does not cover
Program Functionality

Fortify, Coverity, and other application testing tools
cover regular, non-Android specific Bugs:

•  No Security Analysis of the Code Functionality"
•  No Power Analysis of the Application components

and code"
•  No Profiling of the resource consumption of

individual applications"
•  Cannot Regulate/Deny the access and use of

phone subsystems (Camera, Microphone, GPS..)!

Application Testing Framework

App Vetting & Control
•  App Signing – Prevent unauthorized App

Execution
–  Approved Apps are signed by the program

designated approval authority
–  Only program signed Apps can be installed on

the device
•  Customizations made to Android package framework

•  App Analysis & Testing
–  All Apps are analyzed for malware and potential

vulnerabilities
•  AV Scans
•  Vulnerability Scans (Fortify)

–  Expose hidden & unwanted functionality
•  Hidden in Native Libraries
•  Dynamic or obfuscated code

–  Permissions manifest reconciliation against code
11

Application Vetting: Big Picture

Progression of Testing

Android Application Control
•  Application Signing – Prevent unauthorized

App Execution
–  Approved Apps are signed by the program

designated approval authority
–  Only program signed Apps can be installed on

the device
•  Customizations made to Android package

framework

•  Application Stress Testing
– Measure Power Consumption
–  Identify Input Errors / Find UI bugs

16

Application Analysis Framework
•  Android Specific Analysis includes analysis of

the Application Security Manifest
–  Tailored to the Android Permission Model

•  Verify if the requested permissions are
warranted by the submitted code
–  Remove excessive permissions & enforce a tighter

security model
•  Regulate access to critical/restricted resources

–  Modifications on the Android Engine to enable
dynamic policies

–  Control the underlying Dalvik engine to report
absence/depletion of resources instead of lack of
permissions

17

Application Policy Enforcement

Solution: Per Application Policy Enforcement

Provide Dalvik mechanisms to

•  Enforce application Access & Capabilities
•  Tailored to specific Location or Time
•  Tailored to specific Mission

•  Application can still be installed but deprived
access to resources and data selectively

Policy Enforcement paired with Device Security can
significantly reduce the risk of Data Exfiltraction

Android Specific Analysis includes analysis of the
Application Security Manifest (not supported by third-party
vendors)

•  Tailored to the Android Permission Model
•  Verify if the requested permissions are warranted by

the submitted code
•  Curtails excessive permissions and enforces a

tighter security model

Modifications on the Android Engine to enable
dynamic policies

•  Control the underlying Dalvik engine to report
absence/depletion of resources instead of lack of
permissions

•  Regulate access to critical/restricted resources

Application Testing Framework

Power Metering Framework
•  Design & Implement an accurate model for

accounting and policing energy
consumption

•  Two-pronged approach
•  Meter the per-process CPU & Device utilization over time
•  Identify the relative impact of each device component on energy

consumption

•  Design an Android kernel subsystem to
estimate energy

•  Meter energy consumption for each App/process
•  Use for characterizing application behavior
•  This behavior is Application dependent
•  Sometimes the behavior is also User dependent

ATP Architecture

ATP analyzes Android code bundles and returns
messages, analysis reports, and signed APKs

ATP
Repository

Android
code

bundle

Developer Security Assessor

Application
Store

Application Testing Portal

App Manager Analyses Engine

Request Handler

Registration Handler

Submission Validator

UI Handler

API Handler

Pre-Processor

Tool Invoker

Post-Processor

APK Compiler/Signer

Result Handler

Android
Application

Analysis /Reports
& Signed APKs

Security assessor
examines submissions
that do not pass ATP
analysis.

22

Mobilize-ATP Workflow (PASS Use-Case)

NIST Testing
Portal (ATP) App Store

1. Submit Android code
bundle

2. Register submission

3. Tool 1 analysis

7. Tool n
analysis

…

4. Tool 1 status message &
analysis report

6. Tool 2 status message &
analysis report

8. Tool n status message
& analysis report

9. Assess results

11. PASS message & APK

ATP applies Testing to Analyze Android code bundles

10. Sign APK

PASS?

APKs are generated
and signed only if all
security analyses
pass.

AVs and Testing
Tools are invoked in
parallel on received
submissions

5. Tool 2 analysis

Analysis of HTC Logger (CarrierIQ)

23

24

ATP Monitor

v Application Vetting & Testing

v Device Lock-down and Encryption of ALL Data
and Communications

v Enforcement of Security Policies in the Android
Framework

v Second-level Defenses placed in the Android
Linux Kernel
v Prevent Attacks that bypass Android Security Framework

v Android has Inherited some (if not all) of the Linux
Vulnerabilities

v Java Native Interface to Linux Libraries a potential
Avenue for Exploitation

Defense in-Depth:
Multiple Levels of Security

Risks in Mobile Security Supply Chain

Devices

Secure Verify Test Deploy

E
nt

er
pr

is
e

S
ec

ur
ity

E

nt
er

pr
is

e
S

ec
ur

ity

E
nt

er
pr

is
e

S
ec

ur
ity

E

nt
er

pr
is

e
S

ec
ur

ity

E
nt

er
pr

is
e

S
ec

ur
ity

D
ev

ic
e

P

ro
vi

si
on

in
g

MDM/Middleware
Providers

Hardened Android Platform

27

•  Custom modified Android
OS and Linux Kernel

–  Additions, deletions, and
modifications

–  Preference towards Open
Source Solutions

•  Security Stack
–  Data At Rest Encryption
–  Data In Transit Protections
–  Authentication
–  App Vetting and Control
–  Device Integrity Checks

Linux Kernel

Libraries
Surface
Manager

Camera
Driver

USB
Driver

Keypad
Driver

Bluetooth
Driver
WiFi

Driver
Power

Management
Flash Memory

Driver

Binder (IPC)
Driver

Audio
Driver

Display
Driver

OpenSSL
256 AES libc

WebKit

SQLite
OpenGL

/ES FreeType

Media
Framework

SGL

Android Runtime
Core

Libraries

Dalvik Virtual
Machine

Application Framework
Window
Manager

Package
Manager

Telephony
Manager

Content
Providers

Resource
Manager

Location
Manager

View System Notification
Manager

Device
Administration

Activity
Manager

Applications

Phone

Video
Driver

Serial
Driver

Telephony
Server &

TAPI

Direct FB

Frame Buffer

Telephony
Interface

App 1

EncFS sudo

Android
Debug Bridge

Google Stock

zeroize

App 2 App 3 …

DARPA Developed/
Modified SW

Standard Android /
Vendor Provided

DISABLED /
REMOVED

Encrypted File System

FUSE
Library

Ultimately the Testing assists in POLICY
Enforcement

•  Tailored to the Android Permission Model
•  Can allow Location-Based Policies
•  Curtails excessive permissions and enforces a

tighter security model

Modifications on the Android Engine to enable
dynamic policies

•  Control the underlying Dalvik engine to report
absence/depletion of resources instead of lack of
permissions

•  Regulate access to critical/restricted resources

Application Policy Enforcement

Conclusions
Assuring the Secure Operation of Smart Devices
has a wide-range of requirements!
 "
v  Application Testing"

v Static & Dynamic"
v In-Field Instrumentation"
v Power Behavior Metering & Policing !
"

v Physical Device Security"
v Lock-Down of the Device I/O (USB, WiFi, etc.)"
v Encryption of Data both on the Phone & Network"
v Securing Provisioning Process "

Questions ?

Thank you!

